# Elements of Geometry: Containing the First Six Books of Euclid, with a Supplement of the Quadrature of the Circle and the Geometry of Solids

F. Nichols, 1806 - 311 sider

### Indhold

 Afsnit 1 1 Afsnit 2 3 Afsnit 3 5 Afsnit 4 18 Afsnit 5 49 Afsnit 6 62 Afsnit 7 67 Afsnit 8 69
 Afsnit 13 129 Afsnit 14 155 Afsnit 15 159 Afsnit 16 165 Afsnit 17 190 Afsnit 18 192 Afsnit 19 205 Afsnit 20 216

 Afsnit 9 87 Afsnit 10 91 Afsnit 11 107 Afsnit 12 117
 Afsnit 21 227 Afsnit 22 247 Afsnit 23 279

### Populære passager

Side 121 - If two triangles have two angles of the one equal to two angles of the other, each to each, and one side equal to one side, viz. either the sides adjacent to the equal...
Side 42 - TO a given straight line to apply a parallelogram, which shall be equal to a given triangle, and have one of its angles equal to a given rectilineal angle.
Side 63 - Therefore, in obtuse-angled triangles, &c. QED PROP. XIII. THEOREM. In every triangle, the square of the side subtending either of the acute angles is less than the squares of the sides containing that angle, by twice the rectangle contained by either of these sides, and the straight line intercepted between the perpendicular let fall upon it from the opposite angle, and the acute angle.
Side 3 - A circle is a plane figure contained by one line, which is called the circumference, and is such that all straight lines drawn from a certain point within the figure to the circumference, are equal to one another.
Side 183 - Equiangular parallelograms have to one another the ratio which is compounded of the ratios of their sides. Let AC, CF be equiangular parallelograms having the angle BCD equal to the angle ECG ; the ratio of the parallelogram AC to the parallelogram CF is the same with the ratio which is compounded •f the ratios of their sides.
Side 3 - A diameter of a circle is a straight line drawn through the centre, and terminated both ways by the circumference.
Side 291 - All the interior angles of any rectilineal figure, together with four right angles, are equal to twice as many right angles as the figure has sides.
Side 160 - ... extremities of the base shall have the same ratio which the other sides of the triangle have to one...
Side 10 - ... shall be greater than the base of the other. Let ABC, DEF be two triangles, which have the two sides AB, AC, equal to the two DE, DF, each to each, viz.
Side 14 - Therefore, upon the same base, and on the same side of it, there cannot be two triangles that have their sides which are terminated in one extremity of the base equal to one another, and likewise those which are terminated in the other extretnity equal to one another.